Developing a Scale to Measure Secondary School Students’ Motivation Levels towards Physics Courses

Erdoğan Özdemir, Mehmet Kural, Sabri Kocakülah

Abstract


In this study, it was aimed to develop a scale to measure secondary school students’ motivation levels in physics courses. As the first step in the development of the Motivation Scale for Physics Lesson (MSPL); an item pool considering the items in the scales developed by Chin and Shieh (2005), Dede and Yaman (2008) and Glynn vd. (2011) was formed. Thereafter, the experts in the fields of educational sciences and science education were consulted for the validity of the scale. The original version of the scale which consisted of 55 items was created in the direction of the experts’ opinions. MSPL consisting of 55 items, was applied to 492 students in science and anatolian high schools in three different regions of Turkey. Exploratory factor analysis (EFA) was performed to determine the construct validity of the scale and confirmatory factor analysis (CFA) was applied to test the appropriateness of the resulting factor structure. EFA results show that 38 items are grouped under seven factors. The contribution of the seven factors to the total variance is 57.50%, with factor loadings varying from .47 to .85. When the goodness of fit indices obtained from DFA is examined, the analysis results show acceptable model fit. Also, the Cronbach alpha coefficients for the reliability of the scale factors ranged from .60 to .87 and the Cronbach alpha internal consistency coefficient for the whole scale was calculated to be .92. The findings show that the developed scale can be used as a valid and reliable instrument for measuring the motivation levels of the secondary school students in physics courses.


Keywords


motivation;physics education;scale development;secondary school

Full Text:

PDF (Türkçe)

References


Ainley, M., Hidi, S. & Berndorff, D. (2002). Interest, Learning, and the Psychological Processes that Mediate Their Relationship. Journal of Educational Psychology, 94, 545-561.

American Association of Colleges and Universities. (2011). Science and health. Retrieved November 6, 2016, from http://www.aacu.org/resources/sciencehealth/index.cfm.

Ames, C. (1992). Classrooms: Goals, Structures, and Student Motivation. Journal of Edu-cational Psychology, 84, 261–271.

Anderman, E. M. & Maehr, M. L. (1994). Motivation and Schooling in the Middle Grades. Review of Educational Research, 64, 287-309.

Banet, E. & Nunez, F. (1997). Teaching and Learning about Human Nutrition: A const-ructivist approach. International Journal of Science Education, 19(10), 1169-1194.

Broussard, S. C. & Garrison, M. E. B. (2004). The Relationship Between Classroom Moti-vation and Academic Achievement in Elementary School-Aged Children. Family and Consumer Sciences Research Journal, 33(2), 106–120.

Büyüköztürk, Ş. (2017). Sosyal bilimler için veri analizi el kitabı: İstatistik, araştırma dese-ni, SPSS uygulamaları ve yorum (23. basım). Ankara: Pegem Akademi.

Cordova, D. I., & Lepper, M. R. (1996). Intrinsic Motivation and The Process of Learning: Beneficial Effects of Contextualization, Personalization, and Choice. Journal of Educati-onal Psychology, 88(4), 715-730.

Çokluk, Ö., Şekercioğlu, G. & Büyüköztürk, Ş. (2010). Çok değişkenli istatistik SPSS ve LISREL uygulamaları (Birinci basım). Ankara: Pegem Akademi Yayınları.

Deci, E. L., Koestner, R. & Ryan, R. M. (2001). Extrinsic Rewards and Intrinsic Motiva-tion in Education: Reconsidered Once Again. Review of Educational Research, 71, 1–27.

Dede, Y. & Yaman, S. (2008). Fen Öğrenmeye Yönelik Motivasyon Ölçeği: Geçerlik ve Güvenirlik Çalışması. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 2(1), 19-37.

DeVellis, R.F. (2003). Scale development: Theory and applications (2nd edn.). Thousand Oaks, CA: Sage.

Glynn, S. M., Brickman, P., Armstrong, N. & Taasoobshirazi, G. (2011). Science Motiva-tion Questionnaire II: Validation with Science Majors and Nonscience Majors. Journal of Research in Science Teaching, 48 (10), 1159-1176.

Guay, F., Ratelle, C.F., Roy, A. & Litalien, D. (2010). Academic Self-Concept, Autono-mous Academic Motivation, and Academic Achievement: Mediating and Additive Ef-fects. Learning and Individual Differences, 20(6), 644-653.

Günbatar, S. & Sarı, M. (2005). Elektrik ve Manyetizma Konularında Anlaşılması Zor Kavramlar için Model Geliştirilmesi, Gazi Eğitim Fakültesi Dergisi, 25(1), 185-197.

Hair, J. F., Anderson, R. E., Tatham, R. L. & Black, W. C. (1998). Multivariate data analysis (5nd edn.). New Jersey, NJ: Printice-Hall.

Hand, B. & Treagust, D. F. (1991). Student Achievement and Science Curriculum Deve-lopment Using a Constructivist Framework. School Science and Mathematics, 91(4), 172-176.

Hanrahan, M. (1998). The Effect of Learning Environment Factors on Students’ Motiva-tion and Learning. International Journal of Science Education, 20(6), 737–757.

Hidi, S. (1990). Interest and Its Contribution as a Mental Resource for Learning. Review of Educational Research, 60, 549–571.

Hu, L. T. & Bentler, P. M. (1999). Cutoff Criteria for Fit Indexes in Covariance Structural Analysis: Conventional Criteria Versus New Alternatives. Structural Equation Modeling, 6, 1-55.

Johnson, D.W. & Johnson, R.T. (1999). Making Cooperative Learning Work. Theory into Practice. 38(2), 67- 75.

Kaplan, A. & Maehr, M. L. (1999). Enhancing the Motivation of African American Stu-dents: An Achievement Goal Theory Perspective. Journal of Negro Education, 68, 23-35.

Nussbaum, J. & Novick, S. (1982). Alternative Frameworks, Conceptual Conflict and Accommodation: Toward a Principled Teaching Strategy. Instructional Science, 11, 183-200.

Ormrod, J. E. (2003). Educational psychology: Developing learners. Upper Saddle River, N.J: Merrill/Prentice Hall.

Pintrich, P.R., Smith, D.A.F., Garcia, T., & McKeachie, W.J. (1991). A Manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ), Report Number NCRIPTAL-91-B-004. Ann Arbor, MI: National Center for Research to Improve Postse-condary Teaching and Learning.

Pintrich, P. R., Marx, R. W. & Boyle, R. A. (1993). Beyond Cold Conceptual Change: The Role of Motivational Beliefs and Classroom Contextual Factors in The Process Of Con-ceptual Change. Review of Educational Research, 63(2), 167-99.

Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. M. Boekaerts, P. R. Pintrich ve M. Zeidner, (Ed.), Handbook of self-regulation: Theory, research, and applications (s. 451–502) içinde. San Diego, CA: Academic Press.

Posner, G. J., Strike, K.A., Hewson, P.W. & Gertzog, W.A. (1982). Accommodation of a Scientific Conception: Toward A Theory of Conceptual Change. Science Education, 66 (2), 221-227.

Saleh, S. (2014). Malaysian Students’ Motivation Towards Physics Learning. European Journal of Science and Mathematics Education. 2 (4). 223-232.

Speidel,G. & Tharp, R. (1980). What does Self-Reinforcement Reinforce? An Empirical Analysis of The Contingencies in Self-Determined Reinforcement. Child Behavior The-rapy, 2, 1-22.

Tabachnick, B. G. & Fidell, L. S. (2007). Using multivariate statistics (55nd edn.). New York: Allyn and Bacon.

Tezci, E. (2017). Adaptation of ATI-R Scale to Turkish Samples: Validity and reliability analyses. International Education Studies, 10(1), 67-81.

Tuan, H., Chin, C. & Shieh, S. (2005). The Development of a Questionnaire to Measure Students’ Motivation Towards Science Learning. International Journal of Science Educa-tion, 27(6), 634-659.

Uguroglu, M.E., Schiller, D.P. & Walberg, H.J. (1981). A Multidimensional Motivational Instrument. Psychology in the Schools, 18, 279–285.

Ural, A. & Kılıç, İ. (2005). Bilimsel araştırma süreci ve SPSS ile veri analizi. Ankara: Detay Yayıncılık.

Urdan, T. C. & Maehr, M. L. (1995). Beyond Two-Goal Theory of Motivation and Achie-vement: A case for Social Goals. Review of Educational Research, 65(3), 213-243.

Wall, S. (1983). Children’s Self-Determination of Standarts in Reinforcement Contingen-cies: a Re-Examination. Journal of School Psychology, 21, 123-131.

Yılmaz, H. & Çavaş, P. (2007). Reliability and Validity Study of The Students’ Motivation Toward Science Learning (SMTSL) Questionnaire. Elementary Education Online, 6(3), 430-440.




DOI: https://doi.org/10.24106/kefdergi.2123

Refbacks

  • There are currently no refbacks.



Creative Commons License  
 Kastamonu Eğitim'de yayınlanan tüm içerik ve makaleler "Creative Commons Alıntı 4.0 Uluslararası Lisansı" ile lisanslanmıştır.